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Sedivun L. iNTRODUCI lo;; I
The technique of proportional navigation, ( PN ) has been found to be thle

most satisfactory method of guiding homing missilecs - a fact established by
enigineers through m allny years of designi experience rather thani by- analytical
proof. In IN, an attempt is made to mechanlz( the following equation:

where ý is the mnissu~e angular turninig rate and ý is the lieo-,,i.angar
rate referred to Inertial space. N is denoted as thle ''navigation ratio," and
again, the range of acceptable values has been developed mainly through
experience. It is, interesting to note that recently it has been rigorously deter-
mined by means of modern control theory that PN is indeed optimal in that feri
unconstrained control effort, the miss distance at intercept Is minimized in the
mean-squared sense. The correspondence between 13N and optimium '-ontrol
(OC ) has been de~mon str ated by Bryson, lio, and Baron 1 , Janus [ 21 , and
Speyer 1 31, among others.

A previous report 14 ] verified the optimality of PN 6.N casting the
problcom as a 'minimium error regulator' problem and using tile Ogata 15 1
method of solution. The wecakness of the cited work in OC, as vell as thle
classical derivation of PN, is that the plant ('missile) is assumed to resp'.)n~l
instantaneously to gTuidance conmnatids , i.ec. , has no time lags. The preioC'1us
report 14 ] extended prior work by deriving the OC for a missile having a sinigle
timec constant. It was shown that the addition of the time lag profoundly aftcets
the steering law in that the OC for this case requires time varying gains.
These results p)oint ou~t that Missile dynamics should not be neglected if realistic
OC's are to be ob-tained.

Typical homing missiles cannot realistically be characteri zed by a Single
time constant; two or even three lags are required for adequate modeling. The
purpose of this study, is to dlerive the OC for a two-time constant system, and to
analyze the performance of this controller relative to conventional PN. Thle
effect of using such a Controller it) a system characterized~ by three time con-
stants will also be investigated; it is conjectured that, although, it is suboptimal
for this ease, such a scheme would nevertheless be superior to IIN, since thle
latter takes no time lags into account. The method oi sclul Ion used is to cast
the problem- -nin a ftriv i such that the Ogaia method, which has been described and
verifiedI 1 4], cmn be used.



Section 11. THE MINIMUM ERROR REGULA; URn rKOBLEM I
th

Any linear dynamical s. stein of the ni oi ler can be expressed either as
th

al n t order differential equation or a set of n first-order differential equations.
The latter is known as the state formulation and is used herein, since it lends
Itself to matrix-vector notation and manipulation. It will be assunmed that the
system differential equation is given by:

x'Ax+ 3u; x(0) =C,

where

x = n dinimnsional column state vector

u = r dimensional control vector

A =n x n inatrix

B = n x r matrix

anud where the following index is to be minimized:

T T
J(C,T) =x'M(T)Px(T) + f x*(t)Qx(t)dt+ f u*(t)R(t)u(t);dt

"-------" 0 ----- 0
Terminal State Control cost

state weighting
weighting

The * symbol denotes the conjugate transpose of the vector, or simply the
transpose for recal vectors, and P, Q (t), R (t) are matrices of appropriate
dimensions.

Ogata shows that the optimum controller for such a system can be
obtained by solving the nonhomogeneous matrix Riccati equation:

dS A= _ 'OBSQO
dS- -SA - A * SBR (OB*S=Q()

If the rautrices A and B are constant, i.e., if the syetem is stationary, tihe
above rratxix equation can be solved in closed form fo," the time T:

S(T) = ([1 2 1(T) + 022 (T)PJ[I 1P(T) + 0 (T)Pj-*]

2
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w'hIee the 0t.. are obtained from partitioning the matrix

1!
MT P •l(T) I eta(T)

0 T
and M is defined as

-A II.(01311

Q. .( I A ':,

from which it can be seen that M is known from the probJcm statement uld the
performance index.

Once S(T) is known, the optimumn control vector can be obtained from
ithe expression

1U opt(t) = --F(T - t)x(t)

-• where

F(T - t) R-'(t)B W'S (T - t)

In block diagram form, the OC can be icpicted as in Figure 1.

+' -- op WT- SYSTEM (t)

Sx Ax Bu

FIGURE 1. OPTIMAL CONTROL SYSTEM

3,



The solution of the subject problem can then be summarized as follows:

1) From system state equations, and the given perfor-nance index, the

following mairices are known:

A, B, P, Q, R

2) The matrix M can be formed from above

-A I BR- (0) B*
MVf -)4-

Q(0 1 A*II
3,ý From knowledge of M, e tau be found. There are sevcral

methods for computing this, but the use of the Laplace transform is

often the mo.4t convet.ient, This method involves the relationship
M[e MT] = [sI - ] -1

where s is the Laplace operator and I the unit matrix,

MT
4) Once e is known, all of the ¢P are obtained from the relation

M [ I(T) :•2(T) 1
¢4122T)

MT

ýJ 21,(T ) 0 22 ( '

From this, S (T) can be computed:

S(T) 1{(P2 2 1 (T) + 02?.(T)P][ 1 1 (T) + 4) 2 (T)PI 1)

5) Once (T') is knl vn, U (t) and F (T - t) are immediately
opt

obtainable:

F(T - t) R•'(t) B*S (T - t)

Uopt(t) = F(T - t)x(t)

The optimum system thus mechanized will minimize the gOven quadratic index in
the solution interval 0 " t :s T. It should be noted that the optimum solution is
given in terms, of time-to-go (T - t) rather than elapsed time t.

4
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I Section i1. OPTIMUM COri- RULLEP. FOR A TWO-TIME CONSTANT MISSILE

io

The conventional overall loon can be depict,:,.d as Shown. in Fgure 2" a..d
can be readily rearranged with target acceleration (yt) as an input in the

manner of Figure 3. By assuming two time constants for the dynamic lag of the
missile-autopilot combination, the model of Figure 4 is obtained. This figure
also includes an exponential decay model for target accelerat'on, to the left of
the dashed line in Figure 4. The contribution of the target acceleration has,

however, been previously computed (4] aid, since it remains invariant with
the order of the plant, it does not need to be explicitly considered herein. With

refercnce to Figure 4, the problem can be stated as follows: Given the
observable states x,, x 2, x 3, and xq, the control vector is determined that will

minimize the miss distance at intercept only, i.e.,

Y (t) = minimum in the mean squared sense subject to a constraint
Yd t= T= on available control effort.

The state equations can be written directly from Figure 4; the target

acceleration term is ignored for now and will be appended later, since it is the
same as for the cases previously treated.

1=ý X2

x2 - - g x 3

X3 - W2 X3 + 2 X 4

-u)Ix jn! ~X 4 = - iX 4 + La~fn

_ - T E.R - L;N'- OF S;.-T RATE_

DISTURBANCE "

SEEKER, GAIN

Y I
A d I d I

FIGURE 2. TYPICAL HOMdING BLOCK DIAGRAM

5-
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I

In the v'ctor-matrix form. these become

X1 0 1 0 0 x1

•o 0 0 -g 0 X) 00+ n1
X3 0 0 - w, W2 x3 0 e

x¢ 0 0 0COwx4 w
Th \4j~~Ow iLx]fL]n

The generalized index J

T
J x*(T) Px (T) + [x", (t)Q (t)x(t) + u*(t)it (t)u(t) dt

0

is reduced to the desired form by defining

1 0 0 0

0 0 0 0

0 0 0 0 4 ; R= scalar

0 0 0 0

which yields the form

T
J= x(T)2+XfX n 2dt

0

Ti11e aLDve i14JU*2. 11k1!*i1t1" Ie I V -V LEH " c Tt-t'Li- cu, lil-: lllat M

obtained next:

7



Fo -I 0 o lo 0 0 0
0 10g 0 10 0 0 0

0 0 W2 oW 0 0 0 0

0 00 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 -9 - 'L2 0

0 0 0 0 1 0 W2 -C"

from -vhich Is~l - 141 caji be foimiied;

S0 0 0 0 0 0 0

0 -g 0 0 0 0 0

0 0 8 (02 2 0 0 0 01

I0 0 0 0 0g 0w2 0

0 0 0 0 0 0 -

Shice the above matrix is almost triangular, it is most easily inverted

by reducing the augmented matrix,

[sI - M I]

to the uppei triangular form. The inverse is obtained by solving the triangular
matrix as a set of algebraic equations using each column of the augmented

section in turn. Thisprocess yields the matrix sI - M as shown:

S0 0 s 0 •8

! '-_

"" - W 04 ¶ -0 r t -. .1.. .



MUM.I

90I

- (a aw-W) (a-W 2 ) IT ~ w2)

8 S(-W&2 ) ( 9-L1 )(-w 2 ) A 3 (a- w1) (8+ w 1)

0 0

0 0 0 0sw)A 2 (-W)(+))(

o 0 0I sl(a+wl

0 0 0 W

LO8C~')l



________________ -' w2 
W1 W22 g W1

2 w, 2 
_______ ___ 2____2

(-- 1) .2.W) (sC02) XSNS(-Codi (E;+W1, (S-U'2) (O+W2½) Xe2 ao (8+'w Lo I) (B (ew)~ -W) (8; w1 (sW 2)

g,2W12w g2  12 W2 2- 9 (A 2 W 2 2 l2L

(e"4-,02) (8-W,2) (a+w2 ) Xe sW) (9+0)1) (a-C012) (B+W2 ) XS (8- W 1) (S+WO) ('9-'0 2 ) (S-t'W 2 ) N (-a (Cs+Wl (8-6e2)

v wi 2 W2 
2  g w I2 &2 1-c~ 0

&+O1)($-wi)t (8+-W2) XS (B-IWi (S+W1) (8W 2W2) 2 )~ (F'-C'1) (fl-L'd (S-CL12 ) (~W 2)~ (~~ 1 ~'¾ s.

U) 2 
w, g W? W2 (4~w

2  W

03+ w1) ($+W 2 ) XB (S-W 1 ) (8+ w J) (B+w 2 ) X(S-W I) (B+'W 1 ) ("'-(')'2) ? (s -W (8+W 1

13 0

-g
- ~' (* w~)S (81ýW2)

-g W2  - gr L 2  (A)________ 2

(a ) WW2 a 9+ 9+C02 (+,, 1)(S (A2)84. w I 1



i

Correctness of this matrix can be verified by multiplying it by [sI - MN and
observing that the unit matrix results. The ij needed for the compilation of

S(t) are now avallablc, since

F
ofi (2s eP22(s)

The computation of S(t) reqtdres the computation of the following two matrices,

1 21M(t) + 022 (t)P1 I
S~[OJIMt + Ou2(t )P] 'A

Since P is a number matrix, and the addition operation is invariant in the inverse
Laplace transformation, the terms %within the brackets can bc computed prior
to determining the inverse transform of the 0... Also, not all of the terms of

ijjeach tr will be needed; therefore, the matrix elements will be denoted

symbolic ally. This reduces computational complexity considerably. The

matrix% 021(t) is the null matrix; therefore the quantity [ 4),(t) + 0P2 (t)P] is
merely the transform of the first column of 022 (S), to be denoted symbolically
as

h 0 0 0

i 0 0 0
1IP2 1 (t) + 0 22 (t)P] L

k 0 0 0

The form of I[q5,+ •12PI is

a, 1  a12 a1 3  a 14

a 2 l a 22  a 23  a 24011+ 012P=
a 3 1  0 a3 3  a 3 4

a,, 0 0 a 44

Inversion by partitioning into 2 x 2 matrices is simplest in this case; given a
matrix

A _13



and it8 inverse

K I L

The relationship between the two matrices can be established with the aid of the
Saulary relations,

SIs~tsJ = s s-t] = I

which yield the equations

K= (A- BD-LC)-! L=-K1D-'

"M= - D-' C K N= D-'- D-' CL.

The application of the above formulas to the symbolic representation
of [(P11+ 12P] yields the desired inverse:

a, a a4 -a a, a, I a 22a ,1 a I+ a Qt23a,4 -A ,4a22 a 33+ a 13a 3 4a 22-a 1a, a a f a s

(l €1÷ 1z2P 1 • ---......

-- ---- -~ i
where

, *. .-a22R33a44 a-" ... 1 I + a 2a)14a4 - a 12 a2 1a3 3a 42

+ a 2a 23a 44a 31 - ý 12a34a 23a 41 + a 2a24a 33a 4 1)

It will be shown tbat only the first row of t t+ 1 12 P]- is needed. For
this reason, the i =maining rows were not computed. The matrix S (t) can now
be computed since S (t) [0 21 + 0 22 P] 10 11+ 0 12P]-;

I K. 2 h K3 h K4

i K 1 i K2 i K3 i K
C1) •- j K, j K2 j K3 j K4

k K I k K2 k K3 k K '

12
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I

where

SKI= a2 2a33314 4

IK2 ý -a, 2 a33 a44

K 3 = -a, 2 a 13 a44 + at2a23a4,

K 4 = -a( 104 27a 33 + a13a 34a 2 2 - a 3 4a 2 3 1 12 + a 12 af 4a 3 3

Finally, the optimum controller can now be written from the previously
stated formula F(T-t) = R- 1 B"'S(T-t)

(A) 1
2k

F(T-t) =•-•-. [K 1 K2 K3 ý'K4t= (Tr-t) -t
go

and

u opt (tgo) = F t (tgo) x (t)

The remaining task consists of obtaining the quantities k, C 1, K 1, K 2, K3 ,
and K4 as a function of the specific problem variables; for the subject problem
this is algebraically an onerous task. The first step consists of finding the all

and k by inverse Laplace transforming the elements of ((A I+ 0 12 P). The
details of this computation are relegated to Appendix A. Knowledge of the
values of k and the ai. allows C 1 and the K1, and consequently, F(t) to be
computed. By omitting the algebraic details, (t = t is implied)

go _W

.. _ (r,., ÷ & W•t 1
i e' -[ V ( + W2(l))

is obtained, where

2 (w t- 1) e -wit 2( wlt-1) _-w2 t
,17 (WF-W2 ) w2 (w 1-.w 2 )

__2____,_._ 6 ,)2 9( t2w 3 2 (WI-2) :if eO2 w9,.l 2 -e~ -e '
260S~l~u22 e 22(Wlw) I- W -z4-w2w2 w2) e'-e-z

CO J2 w2 (2• + (CO( it- 1) (W2 t-)1) t 3

+ = 7 .....

13



Kj= e(•l )
K2 = t I 2 )t

L•'r =•t]'

(WI+ W2)t l] t e 2K 3 = gc -I I -

4 o, I+ W2)t [ t 2 (1-W~ t -0, 2t) (1 ,- ol-

Cancellation of the common e term and rearrangenmnt of the
remaining terms results in the form

F(tn) = - N IG G, G3 G41

where

g2t2  (Li t +W I + C, 2 W 2 ' - C.(-wC2 ) W _2W _W O".
X+g 2 w1 (g ,

and

G, - g t2
1

G
2

1 (a2 t e2t- ew t+ IGa = - = W•t
3 W2  ( e (2t t2

- W2  F wit e Wit -eW&It i\ 7Wt eW2t- e W2t +

W 2-4 OJ' 2 LI(W1  t CW/ w t2

It is interesting to note that the terms GO, G2, and Ga are identical to the
three equivalent terms obtained for the one-time constant system 141. It should
also be noted that the terms of G3 and G4 within the parentheses are all identical
in form. This is significant irn that the same algorithm can be used to compute
these terms.

The equations for N and G4 are not valid for w I= w 2, since the termi
(w 1 - w2 ) becomes zero, This difficulty is resolved by computing a new set of
equations for those terms valid only for the case where w1 = . By appropriately
combining the terms of N and G4 , the elements containing (cow - W2) can be iso-
lated into the indeterminate form 0/0 when w I= w2. L'Ilospital's rule can then be

14

:~i|



applicd, where the differentiation 1. performed with respect to either w1 or w2.

With the indctcrminacics removed, the substitution

is made into the resulting equation. Application oi this teelmiquc r'Csults in

the equat ion
g~2(j.2+L -wt + -t

Ng " qt --W L 2 + cut 2 c + 2

= w2) ---- + g 1 (w, .

where

1'3 L0) TOt-- U.- w 3 -2wt 40-wt -. -owt wt -2t w e2t 4tL• 3 (. e 4te 4c 5__- te 3 e

1 2 wt e -0
4Wcot t 2G4 .... - 2e°t+

[(9+=w• '2w t t)-.t j
'We now have equations that are valid for all u.. If W2 is allowed to

approach infinity, i.e., the second time lag is eliminated, the above equations
should and do reduce to the ones previously derived 14] for the single lag system.

The optinwum controller can now be written

o rS[ \2

u n =NG N 1 G• G•IN G, -G 4opt c Y X 3
SX4

n =N [GI X'+G62 Y2+ G X3 +GC4 X41

H,,wever, it is seen (Figure 4) thiat Y, j -yd and x2 'r e efd"intrnso

these parameters an! the derived values ok G and G2 , n can be rewritten

\- Nb' (-' \3+ N 4X

.0 a

rhe reason lbr this represeutation is that yd and ýd are not usually explicitly

.measured, since coventienal seekers measure the line-of-sight rate k; since

15
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A yd /R, whee R is the missile-target rang&, the following relatioiaship holds:

• 1 1. \

c go go

where

V c closing velocify -I.

By use of the above, the control equation can be rewritten

NVI n CA + NG 3 x3 + NG4 x 4c g

The first term on right side of above equation Is recognized as being analogous

to classical PN, except that N is time-varyirg instead of fixed. The optimum

controller also has two additional feedback componeuts from the states x3 and x 4.

The inclusicti of the target acceleration model of Figure 4 requires one
additional term in the control equation, the latter having been derived [4]. The
controller would take the form

NV C.°
= • + NG3 x3 + NG4 X4+ Gx

where.

2vt -2vt
t e -e +1

G 4v •2 2vt
W" t 2e 0 t tg

go/

and

x5= n

Again It is noted that G,, has the same form as G3 and the components of G4 .

All of the analytical parameters required to construct the optimum con-

troller have been obtained. In the next seotion a quantitative study of a system

using such a controllei Al be performed.

16
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I Section IV. QIJANTITATIVE ANALYSIS OF A TYPICAL HOMING SYSTEM

I. k.nalysis of the Controller Equations

Th•e optimum homing system requires computation of N, G3 and G4 '
At first glance this appears to be a formidable task since these quantities are
elaborate functions oft w 1, and w 2. However, for a given missile, ' and •

would remain relatively constant, at least for a limited altitude band; in this
study they will be assumed to be constant and the required functions thus
become dependent only on t for a given case. The more general case of

go
varying co and w 2 will be discussed later.

Due to their complexity, it is in most instances impractical to compute
the required parameters in real time from the given equations. A search for
simpler mechanizations requires first that the nature of the subject functions be
studied. For this purpose, values of N, G3 tnd G4 have been computed for a
wide range of values of w, and w2 by using a digital program. Plots of these
functions are shown in Appendix B. It is seen that, although they originate from

complex equations, the plots of N, G3 and G4 show these quantities to be well
behaved, continuous functions cf t . Thus, for a given configuration where w 1go
and w•2 are constants, these quantities could be easily generated as functions of
t by analog (diode function generator) or digital (read-only memory)
go

techniques.

2. Comparative Evaluation of Optimum Controller and Proportional Navigation

The increased complexity of the OC over PN indicates that to be
feasible the OC must yield a considerable payoff over PN in terms of reduced
miss distance. For this rtason, a comparatlive evaluation using simuIation
techniques was performed on a simple model, using both the OC and PN
concepts.

The sample problem concerns a small homing missile in a low-altitude
air-to-ground engagement, with the taret assumed stationary, The pertinent
geometry is depicted in Figure 5. 'thjc model of Figure 4 with the OC appended
can be formally represented as shown in Figure 6-a. However, since conven-
iial seekers.measur....... a ....co-veien repvresenttion is that of Figure

6-b. This model was used to generate two digital simulations using the CSMP7--I-
language. The block diagrams of these programs are shown in Figures 7-a .
and 7-b respecti~vely; the first of these is a direct simulation of the system,

17
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and the second is an adjoint model used for study of stochastic c ffects. Each

model was used in the PN mode where N was held to a constant, and in the OC

mode with time varying coefficients. The specific parameters are summarized

in Table I for each case.

TABLE 1. SIMULATION PARAMETERS

Par. neters PN OC

t wi 1 1

(W2  2 2

I N 4 C

G3  0
G4  0

R 10,000 ft .0, 000 ft

V 1, 000 ft/sec 1, 000 ft/sec

* Computed as a function of t from OC equations.
go

The complexity of the equations for N, G3 and G4 precluded "on line"
computation. These values were precomputed, and entered in the simulation

as tables. The CSMP function generator takes these tabular values and

performs linear interpolation for values of t lying In between table entries.

No effort was made to accurately simulate the subject parameters for very short
ranges. Due to mechanizAtion Ifnm--taatdon s, ms . ckcr•a,. a . "blind raulge'

of several hundred feet, and are unable to accurately measure A. Therefore,

N, G3 and G4 were lineariy decremented to zero, between tg° = 0.5 and tgo = 0

sec. These approximate functions are ehown In Figures 8-a, 8-b, and 8-c.

The simulation study directly evaluated PN with a gain of 4 to the approxi--
mate OC using the paramneter approximation described above. A number of

input perturbations were considered and the resulting miss distance was

measured. Snecific. disturbances were as follv.•.:

Cmse i: Impulsive heading disturbance of 1 degree occurring at an
arbitrary t

22 iI
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Case II: Impulsive disturbance on A of 14/ degree per second occurring
at an arbitrary t

Case III: Additive wide band noise on A with flat power spectrum inSregion 0 - 20 hertz,

Case IV: Additive narrow band noise on A with a single peaked power

spectrum as shown in Figure 9.

The simulation results are shown in Figures 10 through 13, respectively,
for each case. It is evident that a dramatic reduction in miss distance results
from use of the OC; thus, the added complexity of implementing such a control
scheme may in certain instances be well worth the effort.

The OC equations are optimum onty if the plant has two time constants.
The effect of implementing this OC in a higher order system was also studied.
A third time constant of i second was added to the plant, and this system was
ag"air- compared with the use of a constant N. These results are shown in
Figures 14 and 15, Evidently the OC is still superior to PN, although perform-
ance has degraded somewhat. This is a significant result in that most practical
systems are of high order. The above indicates that it an optlaum scheme is

24
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FIGURE 9. NOISE PSD FOR EXAMPLE

derived that accounts for only the predominant time constants (two in this
report), the resulting system performance, although suboptimal, would still.
be superior to PN.

3. The Effective Navigation Ratio

In classical PN the gain N denotes the static ratio of missile turning
rate to line-of-sight rate. The gain N is usually a small number between :3 and
5. The pl,)ts of N in Appendix B show that for the OC, N takes on very large

**values relative to 'lie PN case. One is tenipted' to conclude that the OC requires
Smruch higher turn rates than1 PN. This is not true, however; in Figure 6 it

can be been that the two nonunity feedback terms contribute to the static gain
of the loop. T'he actual value of ý/A can be computed by reducing the two inner

"• loops anti obtaining a single equivalent expression for these. The resulting gain,
,• ignoring missile dynamics, is the navigation ratio for the optinmum system.
i This is given by

N N
Neff I1+ N (G3 + G4)

Nef does not have a large dynamic range. For the numerical example

eff

considered herein it hovers in the region
25
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•2 < 2 N <3;

S•_ thus, the OC does not requiro• increased missile performance.

Si 4. The Effect of tihe Parameter X

The quantity x represen~ts a weight on the parameter N. For large
Svalues of t go it hss little or no effect, but reduces NI heavily when tg°0 is small.

i::i~i •,This effect can be seen in Appendix B, if one compares the plots of N for X - 0

i:- !•with those for X = 1. Since X reduces N near intercept, it obviously reduces
;:require(] missile rnaneuver, since Nef is also reduced in magnitude. Since X ]

Sis thus a signi.ficant design parameter, how does one choose a "good" value?

•_•This problem is intimately tied to each specific missile design, since it relates • =
: ~~directly to available maneuver capability. From Figure 6-a, the called-for • •

maeue in G a e rte

V V A

2 I N +3;

By defining the maximum available maneuver as ti the following expression
Th qcaua be derived from tite above equation. wt ar

Nff- V •
S~c|

val The terms on the right side of this equation can be established for a given

•+ missile and engagem-ent configuration. Thus, the r.amr_-ium pra:.'a value Of
T eff is defined, and this in turn infers a rpecific , since there is no need in 0

weeaith value s f or A th.ineat resuclt in nar itedfrcmsiepteve it obiul educess

of performancisie maneu , penalty, of course, is that for An u 0, the miss
distance will increase over that obtainable with s 0. This is illustrated inauFigure 16 for the example system.
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[ Section V. MECHANIZATION CONSIDERATIONS

A mathematically elegant solution Is useless if hardware implementation
18 not practical. As mentioned before, N, G3 and G4 can be generated by analog

(diode function generators) or digital (read-only memories) means. The input
to such devices would be t , thus requiring a measurement of this quantity.

go

For stationary or slow-moving targets, t can be estimated closely by know-
go

ledge of the initial range and missile velocity profile. Intercept of fast targets
that contribute considc, ably to the closing velocity is more difficult, since
ranging must be obtained during flight. This requires tracking of both inter-
ceptor and target by either ground radar or an active ranging device on board
the interceptor.

Another" major consideration is that the OC requires that all system
states be measured. The actual missile acceleration can be measured with an
accelerometer; yd and Yd are implicitly measured by the seeker as previcusly

shown. The remaining state (x4 in Figure 4) cannot be measured if the two
time constants are assumed to represent the airframe. However, if in an
n thorder system (n-) states are measurable, the n one can be estimated by

"I"observer pole" techniques 16-8]. Finally, if the target acceleration term G5
is to be included, ýt must also be measured. This rcquirement, although diffi-

cult to meet, is no diffrent from the requirement for implementation of biased
PN, where a bias term is appended in order to reduce the miss caused by target
evasion.

Certain types of missiles are required to operate through a wide altitude
band . l er air... .... .l-9 .............. atJ•," c L 11-c axtfravlii t[ilt- conls~awt.s; foi-

Such missiles, W1 and w,. cannot be assumed constant. This pioblem also exists
in conventional systems required to operate in such an environment. The
solution is to generate a family of functions N, G3 and G4, each valid for a
specific altitude band. The controller would then be "band-switched" to the
appropriate functions, dependent on the altitude.

The values of N shown in Appendix B are plotted in log--log coordinate
paper. It is seen that for the vast majority of eases, N can be approximated by
a few straight line segments in the log-lh)g plane. This suggests a very simple
mechanization scheme for N. The above linear relationship implies that

.tn N = C.i+ b. it
1 go region i
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where U is a suiable intercept and b is the signed slope of the straight liuc
i i

approxim ation.

A family of equations as above can be mechanized as shown in Figure 17.

i
£

I
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rI
Section V1. CONCLUSIONS

The problem solved herein is an extension of the work bcgun in 1968 141.
The basic homing system has been augmented by two time constants and cast as
a minimmn regulator problem. Simulation using the resulting controller
equations Indicates that the optimal approach results in a guidance scheme
superior to PN.

Practical problems have been considered and it is concluded that the OC
concept is feasible from a mechanization viewpoint. The added complexity
must be weighed against the substantial payoff in drastically reduced miss
distances.

The behavior of the OC derived herein is consistent with previously
derived results. For very large t , N is assymptotic to 3. As the time

go
constants approach 0 ( , ) N approaches 3 and G3 and G4 approach 0. Thus

for very large tg° or very small time constants, the OC approachcs classical

PN with a gain N 3.

3
4

It
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Appendix A
COMPUTATION OF COMPGNENlT TERMS OF F(t)
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a -cwt ew 2t) ii
ýF W-• )

a4(e

= s (s+k I) (S+-W 2 ))

By analogp to a ,1 k is given by:

S W 1 + 1 tk=-g , --- t--2 --. j+ -2 1- C --
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Appendix B

NUMERICAL DATA FOR. OPTIMUM CONTROLLER GA:NS

Th'le numer1CIical v'alues for the func-tions N, G3 and G4 were computed via
digital program for a wide range of values of w, and cc2. The data are presented
in this appendix in the form of plots of the subject functions versus t (Figures

go13-1 throutgh 13-19). The tinic span considered Is ]0 seconds, which should
cover most practical app1ication6. The assymptotic nature of the functions
allows easy extrapolation from the plots if sornewhat ionger tirtic spans are
deemed desirable. in somne instances, particularly where w I= W2, the
computation of N involves differences of large, ahu-ost equal nuilbcrs; for this
reason, double preolsion arithmetic was found neeassary.
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